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1. Introduction

In this paper, we derive the analytical expressions for first hitting time densities for reflected

Ornstein-Uhlenbeck processes in terms of the corresponding Sturm-Liouville eigenfunction

expansions. The reflected Ornstein-Uhlenbeck (ROU) processes have been studied in eco-

nomics, queueing, finance, etc. Among others, Goldstein and Keirstead [4] used the ROU

processes to model spot interest rate. Ward and Glynn [17–19] proved that the ROU pro-

cesses can be viewed as approximations of queueing systems with reneging or balking, and

some interesting properties of ROU processes were also studied by the authors. Recently, Bo

et al. [1] and Bo, Wang and Yang [2] used the ROU processes to model the price dynamics

in a defaultable regulated market, and the conditional default probability was obtained.

The study of the first hitting time of ROU processes is important both in itself and for its

applications in queueing and finance (see, e.g., [1, 2, 17–19]). In fact, the Laplace transform

of the first hitting time has been obtained in [2] and [3], and the hitting time density was

obtained in [2] by using numerical Laplace inversion. In this paper, we intend to provide an

alternative approach, that is, we will adopt the spectral expansion approach to diffusions

∗This work was supported by the LPMC at Nankai University and the Keygrant Project of Chinese

Ministry of Education (No. 309009).
†Corresponding author. Email: xwyangnk@yahoo.com.cn

1

Preprint ver. file: ROUht_20100910_r1.tex date: September 10, 2010



Y. Li, Y. Wang and X. Yang/Hitting time density for Reflected OU 2

(see, e.g., [7, 9–12, 14, 16]) to compute the eigenfunction expansions for hitting time density

for ROU processes in terms of Hermite function and confluent hypergeometric function. The

large-n asymptotics of the eigenvalues and the expansion coefficients are given in terms of

elementary functions. We also provide an application to the so-called regulated market, in

which some numerical results are included.

The outline of the paper is as follows: Section 2 derives the explicit analytical expressions

for the distribution and density for first hitting time of ROU processes. Section 3 presents

an application to the regulated market and section 4 concludes.

2. Hitting time density for ROU process

In this section we consider the density of first hitting time for ROU process. Let X =

{Xt, t ≥ 0} be an one dimensional ROU process with barriers 0 and 1,1 that is:

dXt = κ(θ −Xt)dt+ σdWt + dLt − dUt, X0 = x ∈ [0, 1], (2.1)

where W = {Wt, t ≥ 0} is an one-dimensional standard Brownian motion, and θ ∈ (0, 1),

κ, σ ∈ (0,+∞). Here L = {Lt, t ≥ 0} and U = {Ut, t ≥ 0} are the regulators at the points

0 and 1 respectively, which are uniquely determined by the following properties:

(i) Both t → Lt and t → Ut are continuous processes with L0 = U0 = 0 and t ∈ R+.

(ii) L and U are minimum nondecreasing processes such that X ∈ [0, 1], and they satisfy∫ t

0
1{Xs=0}dLt = Lt and

∫ t

0
1{Xs=1}dUt = Ut, for t ≥ 0.

For the existence and uniqueness of the strong solutions to (2.1), refer to [13].

The infinitesimal generator for the ROU process in (2.1) is:

A f(x) := κ(θ − x)f ′(x) +
σ2

2
f ′′(x), x ∈ (0, 1), (2.2)

with boundary conditions2:

f ′(0) = 0, and f ′(1) = 0. (2.3)

Let x ∈ [0, 1] be the starting point of the diffusion. Define the first hitting time

Ty := inf{t ≥ 0 : Xt = y}, for some fixed y ∈ [0, 1]. (2.4)

In this paper we focus on the analytic form of the density of the first hitting time,3

fTy (t;x) =
Px(Ty ∈ dt)

dt
.

Then we have the following proposition.

1The choice of the reflecting barriers is just for simplicity, and the general cases are similar.
2It is easy to verify that both of the end points are regular instantaneously reflecting (see Table 15.6.2

in Karlin and Taylor [6]).
3In fact, the following Proposition 2.1 also proves the existence of the density. For the existence of the

hitting time density for general diffusions, one may refer to [7] and the references therein.
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Proposition 2.1. Suppose Xt is the ROU process defined in (2.1), and Ty is the first

hitting time of Xt defined in (2.4). For fixed x, y ∈ [0, 1] satisfying x ̸= y, we have

Px(t < Ty) =
∞∑

n=1

cne
−λnt, t > 0, and (2.5)

fTy (t;x) =
∞∑

n=1

cnλne
−λnt, t > 0, (2.6)

where {λn}∞n=1, 0 < λ1 < λ2 < . . . < λn → ∞ as n → ∞, and {cn}∞n=1 are explicitly given

below. Moreover, for all t0 > 0, the series (2.6) converges uniformly on [t0,∞).

(i) Hitting down (0 ≤ y < x ≤ 1). {λn}∞n=1, 0 < λ1 < λ2 < . . . < λn < ∞ are the roots

of the equation

w1(y, λ) = 0, and (2.7)

cn =
w1(x, λn)

λnw1λ(y, λn)
, n = 1, 2, . . . . (2.8)

Where

w1(x, λ) = A ∗ H
(
λ

κ
, (x− θ)

√
κ

σ

)
+ 1F1

(
− λ

2κ
,
1

2
, (x− θ)2

κ

σ2

)
, (2.9)

with A = − (θ−1)
√
κ 1F1(1− λ

2κ , 32 ,(1−θ)2 κ
σ2 )

σH
(
−1+λ

κ ,(1−θ)
√

κ
σ

) . Here w1λ(y, λ) denotes the first order deriva-

tive w.r.t. λ, H(v, z) is the Hermite function, and 1F1(a, b, z) is the Kummer confluent

hypergeometric function.4

(ii) Hitting up (0 ≤ x < y ≤ 1). {λn}∞n=1 and {cn}∞n=1 are as in (i) with the constant A

in (2.9) substituted by A = −
θ
√
κ 1F1

(
1− λ

2κ , 32 ,
θ2κ
σ2

)
σH

(
−1+λ

κ ,− θ
√

κ
σ

) .

Proof of (2.5): Specialize Proposition 2 and Remark 3 in Linetsky [9] to the conditions

satisfied by the ROU process.

(i) Hitting down (0 ≤ y < x ≤ 1). The relevant Sturm-Liouville (SL) problem is

− A f(x) = λf(x). (2.10)

on (y, 1), where A is defined in (2.2). 1 is a regular instantaneously reflecting boundary,

and the corresponding boundary condition is the second one in (2.3). The unique (up to a

multiple independent of x) solution of the ODE (2.10) with boundary condition f ′(1) = 0

4Both H(v, z) and 1F1(a, b, z) are available as build-in functions in MATHEMATICAr with the calls

HermiteH[v, z] and Hypergeometric1F1[a; b; z] respectively.
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is (2.9), and it satisfies
∫ 1

y
|f(x, λ)|2m(x)dx < ∞.5 Moreover, the spectrum of A is non-

negative, simple and purely discrete (see [11] and [14]).

(ii) Hitting up (0 ≤ x < y ≤ 1). It is similarly treated. �

Proof of (2.6): The distribution of Ty is displayed in (2.5). The only thing to do is to verify

the uniformly convergence of (2.6). Here, the asymptotic expressions of 1F1(a, b, z) when

a → −∞ and H(v, z) when v → ∞ are needed to derive the estimates of λn and cn. Those

are (see p.68 in [15] and p.285 in [8])

1F1(a, b, z) = π−1/2Γ(b)ez/2 (z(b/2− a))
1/4−b/2

× cos(2
√
z(b/2− a)− πb/2 + π/4){1 +O(|a|−1/2)}, (2.11)

for fixed b > 0, z > 0, and

H(v, z) = 2v+1/2ez
2/2(v/2 + 1/4)v/2e−v/2−1/4

× cos(2z
√

v/2 + 1/4− vπ/2){1 +O(v−1/2)}. (2.12)

for fixed z ∈ R. In order to confirm the uniformly convergence of the series in (2.6), we will

give some proper estimates of {λn}∞n=1 and {cn}∞n=1.

(i) Hitting down (0 ≤ y < x ≤ 1). From (2.7) and (2.9), it follows that {λn} are the roots

of the following equation

σH

(
−1 +

λ

κ
, (1− θ)

√
κ

σ

)
1F1

(
− λ

2κ
,
1

2
, (y − θ)2

κ

σ2

)
= (θ − 1)

√
κ1F1

(
1− λ

2κ
,
3

2
, (1− θ)2

κ

σ2

)
H

(
λ

κ
, (y − θ)

√
κ

σ

)
. (2.13)

Using the expressions (2.11), (2.12) and standard calculus, equation (2.13) turns to be

sin

(
πλ

2κ

)
cos(α− βy){1 +O(λ− 1

2 )} = 0, (2.14)

where α = 2(1−θ)
√
κ
σ

√
λ
2κ − 1

4 and βy = 2(y−θ)
√
κ
σ

√
λ
2κ + 1

4 . From (2.14), when n is large

enough, λn can be well approximated by one of the elements in the following set

{2κk}∞k=1 ∪ {sk}∞k=1, (2.15)

where sk is the solutions to the equation f(λ) := α − βy − (π2 + kπ) = 0. Define C :=
σ

2
√
κ
(π2 + kπ). By the standard calculus, we have

sk =


(

C(y−θ)−(1−θ)
√

C2−((1−θ)2−(y−θ)2)/2

((1−θ)2−(y−θ)2)/
√
2κ

)2

+ κ
2 ∼ C1k

2, if 2θ > 1 + y,(
C(y−θ)+(1−θ)

√
C2−((1−θ)2−(y−θ)2)/2

((1−θ)2−(y−θ)2)/
√
2κ

)2

+ κ
2 ∼ C2k

2, otherwise,

(2.16)

5Here m(x) is the speed density given by m(x) = 2
σ2 exp

(
κθ2

σ2 − κ(θ−x)2

σ2

)
.
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where C1 and C2 are two positive constants independent of k.

Next we study the large-n approximation for cn. Recall (2.8). Using the asymptotic

expressions (2.11) and (2.12), we have, for large n

cn ≈
− sin πλn

2κ cos(α− βx)

λn

(
− π

2κ cos(πλn

2κ ) cos(α− βy) + sin πλn

2κ sin(α− βy)g(λn)
) ,

where g(λn) =
1−θ
2σ

√
κ
(λn

2κ − 1
4 )

− 1
2 − y−θ

2σ
√
κ
(λn

2κ + 1
4 )

− 1
2 . Then we have

cn ≈

{
0, if λn ≈ 2κk,

(−1)k+1 cos(α−βx)
λng(λn)

∼ O(λ
− 1

2
n ), if λn ≈ sk,

(2.17)

From (2.15), (2.16) and (2.17), we can conclude that the series in (2.6) is uniformly conver-

gent on [t0,∞) for all t0 > 0.

(ii) Hitting up (0 ≤ x < y ≤ 1). Since the proof is similar, we omit it. �

3. An application to the regulated market

In this section, we use the ROU process on [0, 1] to model the price dynamics of the goods

or services in a regulated market (see, e.g., [1]). The goal is to compute the conditional

default probability (CDP) under the structure framework for credit risk. Here the default

is due to down-crossing some threshold level by the underlying price process.

Mathematically, we are concerned with the following quantity

F (t;x, y) := Px(Ty < t), t > 0, 1 ≥ x > y ≥ 0. (3.1)

Here x is the starting point of the process and y is the default barrier. From (2.5), we

have F (t;x, y) = 1−
∑∞

n=1 cne
−λnt, t > 0, where {λn} and {cn} are given by Proposition

(2.1). For simplicity, throughout this section, we adopt the following parameter values:

y = θ = 0.5, κ = 0.25, σ = 0.2 and x = 0.8.

n λn cn n λn cn n λn cn

2 0.50 0 100 46.0 −9.50 ∗ 10−11 200 95.0 1.38 ∗ 10−8

3 1.00 −1.48 ∗ 10−17 101 46.5 −1.19 ∗ 10−10 201 95.5 7.05 ∗ 10−9

4 1.50 −1.39 ∗ 10−6 102 47.0 2.21 ∗ 10−10 202 96.0 6.24 ∗ 10−9

6 2.00 0 103 47.5 2.02 ∗ 10−11 203 96.5 5.64 ∗ 10−9

7 2.50 −3.61 ∗ 10−17 104 48.0 −2.59 ∗ 10−10 204 97.0 5.11 ∗ 10−9

Table 1. The values of λn and cn when λn ≈ 2κk, k ∈ N+ := {1, 2, . . . }.

n λn cn n λn cn

1 0.34737 1.14216 54 24.0743 −0.12857

5 1.96233 0.0468945 74 33.5492 −0.0332739

13 5.12344 −0.323061 97 44.6032 0.111897

23 9.86158 0.0950119 123 57.2363 −0.03439

37 16.1784 0.141182 152 71.4485 −0.06970
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Table 2. The values of λn and cn when λn ≈ sk, k ∈ N+ (recall sk in (2.16)).

Table 1 and 2 report the values of {λn} and {cn}. These values are consistent with the

asymptotic estimates obtained in section 2.
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Fig 1. Left: The conditional default probability of the default time. The solid line and the dashed

depict the series (2.5) truncated after 251 terms and 20 terms respectively. Right: Density func-

tions corresponding to the Left panel.
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Fig 2. The densities of the first hitting times for OU process and ROU process with the same

parameters. The solid line is for the ROU process (the series (2.5) truncated after 251 terms).

Figure 1 plots the conditional default probability (i.e., the cumulative distribution func-

tion F (t; 0.8, 0.5)) and the corresponding density function. Figure 2 compares the density

of first hitting time of OU process (see (8) in Göing-Jaeschke and Yor [5]) with the density

of first hitting time for ROU process. We find that, due to the existence of the reflecting

barrier, the time taken by the ROU process to hit the default barrier y is shorter than that

taken by the OU process. This phenomenon is consistent with intuition.

4. Conclusion

In this paper, we have presented the analytic expressions for the densities of first hitting

times of reflected Ornstein-Uhlenbeck processes. An application to the regulated market

has been included. The numerical results are consistent with both theory and intuition.
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