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Our Goal

Compute the conditional survival probability in a regulated market
under the structural framework using incomplete information.

conditional survival probability
regulated market and why reflection
structural framework
incomplete information
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Conditional Survival Probability (CSP)

Denote the default time of a firm by τ , and the information we know
about the firm at time t by Ft for t ≥ 0. Then the CSP goes as follows

P(τ > t |Fs) for 0 ≤ s < t .

Q1: Definition of τ?

Q2: How much information is available for us?
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Structure Framework for Credit Risk

Consider a firm with market value (Vt )t≥0. The firm is financed by
equity and a zero coupon bond with face value D and maturity date
T . Denote the default time by τ , and assume that V0 > D.

Classical approach: Merton (1974)

τ = T , if VT < D; τ =∞, otherwise

First-passage approach: Black & Cox (1976) and this talk

τ = inf{t > 0; Vt < D}

Other models: Excursion approach, Reduced-form models.
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Regulated Market and “Why Reflection”

In a regulated market, the goods or services (for instance, grains,
water, gas, electricity supply and other important materials or
services for a country) are regulated by a government appointed
body and the prices are allowed to be charged.

The price control commonly results in the boundedness of the price of
these regulated goods or services. This characteristic (boundedness)
stimulates us to present a tractable bounded stochastic process to
describe the price dynamics of the regulated goods or services.
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Regulated Market and “Why Reflection” (Cont’d)

Krugman (1991): Foreign exchange rate
Goldstein & Keirstead (1997): Interest rate
Veestraeten (2008): Stock price

In this talk, we will use the reflected Ornstein-Uhlenbeck (O-U)
process on [0,b] (b > 0) to model the price dynamics of the regulated
goods or services.

The other bounded processes may also be adopted to formulate the
regulated price dynamics.
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Incomplete (Partial) Information

Usually, the complete information on the market price is unavailable.
Specifically, we will assume that:

We can only observe the market price at some discrete times, which
can be interpreted as the quarterly provided reports on the asset
evaluations of the firm (see, e.g., Duffie & Lando (2000)).

The observed values include noises, which may be caused by noisy
accounting report of assets.
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The ROU Model

Let Λ = (Ω,G, (Gt )t≥0,P) be a complete probability space with (Gt )t≥0
satisfying the usual conditions. P is the physical (statistical) measure.
Suppose that the market price (of some regulated financial variables)
follows a bounded process Q = (Qt )t≥0:{

dQt = (µ− αQt )dt + σdwt + dlt − dut ,
Q0 = v ∈ [0,b],

where w = (wt )t≥0 is a standard Brownian motion and µ ∈ R,
α, σ ∈ R+. l = (lt )t≥0 and u = (ut )t≥0 are usually called the regulators
of the reflected process Q at points 0 and b.

Krugman (1991) interpreted the regulators as the governmental (or
central bank) intervention. (RBM to ROU, mean reversion)
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The ROU Model (Cont’d)

In fact, l and u are the minimum nondecreasing processes that can
prevent the process from going outside the band [0,b]. They have the
following properties (see, e.g., Harrison (1986)):

For t ∈ [0,∞), the sample paths t → lt and t → ut are continuous and
l0 = u0 = 0.∫ t

0
1{Qs>0}dls = 0, and

∫ t

0
1{Qs<b}dus = 0, for all t > 0.

For the detailed mathematical description for the regulators, refer to
Protter (2003) and Asmussen & Pihlsgård (2007).
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The Default Time

Define the default time τ by

τ = inf{t ≥ 0; Qt ≤ d},

where d ∈ [0, v) denotes the default barrier.

Let Dt := 1{τ≤t}. We call (Dt )t≥0 the default indicator process.
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An Example

USD/CNY: From July 21, 2005, floating FX came into effect. Many
Chinese firms have been bankrupted due to the appreciation of CNY.

Figure: LEFT: Conditional survival function `(s, t ; y) for y = 2.5, 1.5, 0.5,
−0.5, −1.5 with s = 0.1; RIGHT: A local display on the axis domain
[0.05, 0.2]× [0.3, 0.55] for the left figure.
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The Incomplete Information

Assume that 0 ≤ t1 < t2 < · · · < tn < · · · are a sequence of
deterministic observed times. For each t > 0 fixed, define
nt := max{j ; tj ≤ t}.

We denote the observed price at time ti by Yti := Qti + ξti , where
ξ = (ξt )t≥0 is an extra noisy source independent of Q.

The partial information is F = (Ft )t≥0 ⊂ G, where

Ft = σ
(
{Yt1 , · · · ,Ytnt

}
)
∨ σ ({Du; 0 ≤ u ≤ t}) .
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What Will I Do

For convenience, we introduce the following notation: for every
(t , s) ∈ [0,∞)× [0,∞) with t > s, denote the CSP by

`(s, t ,Ys) := P(τ > t |Fs).

We are going to present the explicit expression for the CSP `(s, t ,Ys)
for the case t > s and s = ti with i = 1,2, . . . . We consider the cases
of single observation and multiple observations separately.

In this talk, we only depict the result for the case of single
observation, i.e., s = t1.
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Some Known Results

The transition density for the ROU process has been obtain by
spectral expansion technique in Linetsky (2005).

The Laplace transform of the first hitting time of ROU process has
been obtained in Bo, Wang and Zhang (2006).
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Theorem
Let s = t1 and t > s. Then the Conditional Survival Probability is

`(s, t ,Ys) =

∫ b
d Pu(τ > t − s)h(du,Ys, s)∫ b

d h(du,Ys, s)
,

where

h(du, y , s)

du
=
Fξ(s; y − du)

FY (s; du)

[
p(s; v ,u)−

∫ s

0
p(s − r ; d ,u)Pv (τ ∈ dr)

]
with p(·; ·, ·) being the transition density of the ROU processes. Here

FX (t ; dx) := Pv (Xt ∈ dx), t ≥ 0.
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We next presents some numerical results associated with the CSP.

For parsimony, we will adopt the following preference parameters.

Table: Preference parameters.

drift coefficient µ 0
decay coefficient α 1
spot interest rate r̄ 0.06
diffusion coefficient σ 1
reflected upper bound b 1
default barrier d 0.25
initial asset value Q0 = x0 0.5
added noisy source ξt N(0,1)
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Figure: LEFT: Conditional survival function `(s, t ; y) for y = 2.5, 1.5, 0.5,
−0.5, −1.5 with s = 0.1; RIGHT: A local display on the axis domain
[0.05, 0.2]× [0.3, 0.55] for the left figure.
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Table: Conditional survival probabilities at Xs = y = −1.5 and 2.5 with
s = 0.1. The non-regulated counterparts are given in parenthesis.

`(s, t ; y) y = −1.5 y = 2.5
t − s = 0.1 0.532 (0.541) 0.701 (0.698)

0.2 0.371 (0.386) 0.509 (0.528)
0.3 0.269 (0.300) 0.372 (0.421)
0.4 0.198 (0.242) 0.271 (0.345)
0.5 0.144 (0.201) 0.198 (0.288)
0.6 0.106 (0.169) 0.145 (0.244)
0.7 0.078 (0.144) 0.106 (0.208)
0.8 0.057 (0.123) 0.078 (0.179)
0.9 0.042 (0.106) 0.057 (0.154)
1.0 0.031 (0.092) 0.042 (0.134)
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Is ROU process statistical tractable?
MLE in Bo, Wang, Yang and Zhang (2011).

Boundary behaviors: Reflected? Absorbed? Unattainable? ...

Jump risk and Time-varying volatility
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Thank you!
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